Abstract

Observation or sampling error in population monitoring can cause serious degradation of the inferences, such as estimates of trend or risk, that ecologists and managers frequently seek to make with time-series observations of population abundances. We show that replicating the sampling process can considerably improve the information obtained from population monitoring. At each sampling time the sampling method would be repeated, either simultaneously or within a short time. In this study we examine the potential value of replicated sampling to population monitoring using a density-dependent population model. We modify an existing population time-series model, the Gompertz state-space model, to incorporate replicated sampling, and we develop maximum-likelihood and restricted maximum-likelihood estimates of model parameters. Depending on sampling protocols, replication may or may not entail substantial extra cost. Some sampling programs already have replicated samples, but the samples are aggregated or pooled into one estimate of population abundance; such practice of aggregating samples, according to our model, loses considerable information about model parameters. The gains from replicated sampling are realized in substantially improved statistical inferences about model parameters, especially inferences for sorting out the contributions of process noise and observation error to observed population variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call