Abstract

Many natural surfaces, including the wings of cicada insects, have shown to display bactericidal properties as a result of surface topography. Moreover, the size and distribution of the surface features (on the nano- and microscale) are known to influence the efficacy of the surface at inhibiting bacterial cell growth. While these types of natural surfaces illustrate the effect of structure on the bactericidal activity, a deeper understanding can be achieved by creating surfaces of different feature sizes. This is essential in order to understand the effects of changes of surface topography on bacteria-surface interactions. To this end, we have performed a series of replica molding processes of the wings of the Megapomponia Intermedia cicada to prepare wing replicas in polyethylene glycol (PEG), which possess the topographical features of the wing surface, with a minimum loss of feature resolution. Atomic force microscopy characterization of these patterned surfaces in both air and aqueous environments shows that by controlling the swelling characteristics of the PEG, we can control the ultimate swollen dimensions of the nanopillar structures on the surface of PEG. As a result, by using a single wing with an average nanopillar height of 220 nm, different patterned PEG samples with nanopillar heights ranging from 180 to 307 nm were produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.