Abstract

Current approaches aimed at determining the free energy surface of all-atom medium-size proteins in explicit solvent are slow and are not sufficient to converge to equilibrium properties. To ensure a proper sampling of the configurational space, it is preferable to use reduced representations such as implicit solvent and/or coarse-grained protein models, which are much lighter computationally. Each model must be verified, however, to ensure that it can recover experimental structures and thermodynamics. Here we test the coarse-grained implicit solvent OPEP model with replica exchange molecular dynamics (REMD) on six peptides ranging in length from 10 to 28 residues: two alanine-based peptides, the second beta-hairpin from protein G, the Trp-cage and zinc-finger motif, and a dimer of a coiled coil peptide. We show that REMD-OPEP recovers the proper thermodynamics of the systems studied, with accurate structural description of the beta-hairpin and Trp-cage peptides (within 1-2 A from experiments). The light computational burden of REMD-OPEP, which enables us to generate many hundred nanoseconds at each temperature and fully assess convergence to equilibrium ensemble, opens the door to the determination of the free energy surface of larger proteins and assemblies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call