Abstract

In this paper, we examine a single-product, discrete-time, non-stationary, inventory replenishment problem with both supply and demand uncertainty, capacity limits on replenishment quantities, and service level requirements. A scenario-based stochastic program for the static, finite-horizon problem is presented to determine replenishment orders over the horizon. We propose a heuristic that is based on the first two moments of the random variables and a normal approximation, whose solution is compared with the optimal from a simulation-based optimization method. Computational experiments show that the heuristic performs very well (within 0.25% of optimal, on average) even when the uncertainty is non-normal or when there are periods without any supply. We also present insights obtained from sensitivity analyses on the effects of supply parameters, shortage penalty costs, capacity limits, and demand variance. A rolling-horizon implementation is illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.