Abstract

Algal blooms caused by high concentrations of nutrients (especially phosphorus) limit the use of recycled water (RW) for replenishing landscape ponds in the context of global water scarcity. Previous studies have demonstrated that alum sludge is a low cost phosphorus sorption medium, which could potentially be applied in constructed wetlands and sewage treatment plants. However, whether alum sludge can be used for algae inhibition in reclaimed water urban landscape ponds (RWULPs) should be explored. In this study, phosphorus removal and algae inhibition by alum sludge were investigated in a RWULP in China. The results highlight that there is a serious risk of algal blooms in RWULPs. The algal density was found to be 1.58 × 105 cell·mL−1, which is 6.84 times higher than that of the surface water ponds. The algal blooms presented a Cyanophyta–Chlorophyta–Bacillariophyta-type, and the dominant algae species were Microcystis flos-aquae (Wittr.) Kirchner, Chlorella vulgaris, and Scenedesmus quadricauda. Moreover, the removal rate of phosphorus by alum sludge was as high as 98% and eventually leads to phosphorus stress, which has an important effect on algae growth and algae inhibition rate of 80%. In addition, the proportion of phosphorus and nitrogen in the adsorbed alum sludge increased by 3.12% and 0.32%, respectively, and Al3+ was reduced by only 2.18%. Alum sludge is a potential inhibitor of algae in RWULPs that does not negatively impact the environment. These results are of great importance in algal bloom control of RWULPs and may help alleviate the problem of urban water resource scarcity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.