Abstract

Background: Covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major cause of viral persistence in patients with chronic HBV infection. Understanding the mechanisms underlying stability and persistence of HBV cccDNA in hepatocytes is critical for developing novel therapeutics and managing chronic hepatitis B. In this study, we observed an unexpected increase in HBV cccDNA levels upon suppression of transcription by de novo DNA methyltransferase DNMT3A and uncovered additional mechanisms potentially involved in HBV cccDNA maintenance. Methods: HBV-expressing cell lines were transfected with a DNMT3A-expressing plasmid. Real-time PCR and HBsAg assays were used to assess the HBV replication rate. Cell cycling was analyzed by fluorescent cell sorting. CRISPR/Cas9 was utilized to abrogate expression of APOBEC3A and APOBEC3B. Alterations in the expression of target genes were measured by real-time PCR. Results: Similar to previous studies, HBV replication induced DNMT3A expression, which in turn, led to reduced HBV transcription but elevated HBV cccDNA levels (4- to 6-fold increase). Increased levels of HBV cccDNA were not related to cell cycling, as DNMT3A accelerated proliferation of infected cells and could not contribute to HBV cccDNA expansion by arresting cells in a quiescent state. At the same time, DNMT3A suppressed transcription of innate immunity factors including cytidine deaminases APOBEC3A and APOBEC3B. CRISPR/Cas9-mediated silencing of APOBEC3A and APOBEC3B transcription had minor effects on HBV transcription, but significantly increased HBV cccDNA levels, similar to DNMT3A. In an attempt to further analyze the detrimental effects of HBV and DNMT3A on infected cells, we visualized γ-H2AX foci and demonstrated that HBV inflicts and DNMT3A aggravates DNA damage, possibly by downregulating DNA damage response factors. Additionally, suppression of HBV replication by DNMT3A may be related to reduced ATM/ATR expression. Conclusion: Formation and maintenance of HBV cccDNA pools may be partially suppressed by the baseline expression of host inhibitory factors including APOBEC3A and APOBEC3B. HBV inflicts DNA damage both directly and by inducing DNMT3A expression.

Highlights

  • Chronic hepatitis B is one of the most common chronic infectious diseases in the world, and can lead to liver cirrhosis and hepatocellular carcinoma (HCC) [1]

  • The hepatitis B virus (HBV) closed circular DNA (cccDNA) pool is largely maintained by the conversion of relaxed-circular DNA (rcDNA) into cccDNA andinfection of susceptible hepatocytes by progeny virions [7]

  • To precisely investigate whether increased DNMT3A expression could interfere with HBV replication, we overexpressed DNMT3A in HepG2-1.1 cells (Figure S1), and analyzed its effects on the HBV replication cycle

Read more

Summary

Introduction

Chronic hepatitis B is one of the most common chronic infectious diseases in the world, and can lead to liver cirrhosis and hepatocellular carcinoma (HCC) [1]. The relaxed-circular DNA (rcDNA) genome of the hepatitis B virus (HBV) is modified and archived in the nucleus of infected hepatocytes as covalently closed circular DNA (cccDNA). This episomal intermediate of HBV replication serves as the template for genomic rcDNA and all HBV proteins forming progeny viruses. Closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major cause of viral persistence in patients with chronic HBV infection. Conclusion: Formation and maintenance of HBV cccDNA pools may be partially suppressed by the baseline expression of host inhibitory factors including APOBEC3A and APOBEC3B. HBV inflicts DNA damage both directly and by inducing DNMT3A expression

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.