Abstract

Event traces are helpful in understanding the performance behavior of message-passing applications since they allow in-depth analyses of communication and synchronization patterns. However, the absence of synchronized hardware clocks may render the analysis ineffective because inaccurate relative event timings can misrepresent the logical event order and lead to errors when quantifying the impact of certain behaviors. Although linear offset interpolation can restore consistency to some degree, inaccuracies and time-dependent drifts may still disarrange the original succession of events—especially during longer runs. In our earlier work, we have presented an algorithm that removes the remaining violations of the logical event order postmortem and, in addition, have outlined the initial design of a parallel version. Here, we complete the parallel design and describe its implementation within the Scalasca trace-analysis framework. We demonstrate its suitability for large-scale applications running on more than thousand application processes and evaluate its accuracy by showing that it eliminates inconsistent inter-process timings while preserving the length of local intervals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.