Abstract
Replanning via determinization is a recent, popular approach for online planning in MDPs. In this paper we adapt this idea to classical, nonstochastic domains with partial information and sensing actions. At each step we generate a candidate plan which solves a classical planning problem induced by the original problem. We execute this plan as long as it is safe to do so. When this is no longer the case, we replan. The classical planning problem we generate is based on the T0 translation, in which the classical state captures the knowledge state of the agent. We overcome the non-determinism in sensing actions, and the large domain size introduced by T0 by using state sampling. Our planner also employs a novel, lazy, regression-based method for querying the belief state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.