Abstract

A vaccinia virus (VV) recombinant is described in which the outer envelope of extracellular enveloped virus (EEV), cell-associated enveloped virus (CEV) and intracellular enveloped virus (IEV) is labelled with the enhanced green fluorescent protein (EGFP) derived from Aequorea victoria. To construct this virus, EGFP was fused to the VV B5R protein from which the four short consensus repeats (SCRs) of the extracellular domain had been deleted. Cells infected with the recombinant virus expressed a B5R-EGFP fusion protein of 40 kDa that was present on IEV, CEV and EEV, but was absent from IMV. The recombinant virus produced 2- and 3-fold reduced levels of IMV and EEV, respectively. Analysis of infected cells by confocal microscopy showed that actin tail formation by the mutant virus was reduced by 86% compared to wild-type (WT). The virus formed a small plaque compared to WT, consistent with a role for actin tails in promoting cell-to-cell spread of virus. However, the enveloped virions were still transported to the cell surface, confirming that this process is independent of actin tail formation. Lastly, we compared the mutant virus with a recombinant VV in which the B5R SCR domains were deleted and show that, contrary to a previous report, the plaque size of the latter virus was reduced compared to WT. This observation reconciles an inconsistency in the field and confirms that viruses deficient in formation of actin tails form small plaques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call