Abstract
BackgroundEvidence suggests reallocating daily sedentary time to physical activity or sleep confers important health benefits in cancer survivors. Despite emerging research suggesting physical activity as a treatment for cancer-related cognitive impairment (CRCI), little is known about the interactive effects of behaviors across the 24-h period. The present purpose was to examine the cognitive effects of reallocating sedentary time to light-intensity physical activity, moderate-to-vigorous physical activity (MVPA), or sleep in breast cancer survivors.MethodsBreast cancer survivors (N = 271, Mage = 57.81 ± 9.50 years) completed iPad-based questionnaires and cognitive tasks assessing demographics, health history, executive function, and processing speed (Task-Switch, Trail Making). Participants wore an accelerometer for seven consecutive days to measure their sedentary, physical activity, and sleep behaviors. Single effects (each behavior individually) and partition (controlling for other behaviors) models were used to examine associations among behaviors and cognitive performance. Isotemporal substitution models were used to test the cognitive effects of substituting 30 min of sedentary time with 30 min of light-intensity activity, MVPA, and sleep.ResultsMVPA was associated with faster Task-switch reaction time in the partition models (stay: B = − 35.31, p = 0.02; switch: B = − 48.24, p = 0.004). Replacing 30 min of sedentary time with 30 min of MVPA yielded faster reaction times on Task-Switch stay (B = − 29.37, p = 0.04) and switch (B = − 39.49, p = 0.02) trials. In Trails A single effects models, sedentary behavior was associated with faster completion (B = − 0.97, p = 0.03) and light-intensity activity with slower completion (B = 1.25, p = 0.006). No single effects were observed relative to Trails B completion (all p > 0.05). Only the effect of MVPA was significant in the partition models (Trails A: B = − 3.55, p = 0.03; Trails B: B = − 4.46, p = 0.049). Replacing sedentary time with light-intensity activity was associated with slower Trails A (B = 1.55 p = 0.002) and Trails B (B = 1.69, p = 0.02) completion. Replacing light activity with MVPA yielded faster Trails A (B = − 4.35, p = 0.02) and Trails B (B = − 5.23, p = 0.03) completion.ConclusionsFindings support previous research suggesting MVPA may be needed to improve cognitive function in breast cancer survivors. Trails findings underscore the need to dissect sedentary contexts to better understand the impact of daily behavioral patterns on CRCI. Additional research investigating the cognitive impacts of behaviors across the 24-h period is warranted.Trial registrationThis study is registered with United States ClinicalTrials.gov (NCT02523677; 8/14/2015).
Highlights
Evidence suggests reallocating daily sedentary time to physical activity or sleep confers important health benefits in cancer survivors
moderate-to-vigorous physical activity (MVPA) was associated with faster task-switch performance in the sedentary time substitution models, while replacing sedentary time with light-intensity activity yielded slower performance on the Trails tasks
While the present study provides evidence in support of an MVPA prescription for improved cognitive health in Breast cancer survivors (BCS), the counterintuitive effects of light-intensity activity warrant further investigation
Summary
Evidence suggests reallocating daily sedentary time to physical activity or sleep confers important health benefits in cancer survivors. Improvements in cancer detection and treatment have resulted in a burgeoning population of cancer survivors in the United States (US) While these improvements represent an important advancement in cancer care, researchers and clinicians face new health challenges associated with cancer survivorship and aging. Cognitive deficits due to cancer have increasingly been recognized as a clinical research priority, with some studies suggesting up to 83% of BCS report cognitive impairment after diagnosis [2]. These impairments can be intense, disruptive, and last for durations up to 20 years after treatment ends [3]. The increasing prevalence of cancer-related cognitive impairment (CRCI), as a result of the rapidly growing population of adults at the intersection of cancer-related and age-related cognitive decline, indicate a critical need to investigate potential treatments for CRCI [4, 5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.