Abstract
Concept embeddings are low-dimensional vector representations of concepts such as MeSH:D009203 (Myocardial Infarction), whose similarity in the embedded vector space reflects their semantic similarity. Here, we test the hypothesis that non-biomedical concept synonym replacement can improve the quality of biomedical concepts embeddings. We developed an approach that leverages WordNet to replace sets of synonyms with the most common representative of the synonym set. We tested our approach on 1055 concept sets and found that, on average, the mean intra-cluster distance was reduced by 8% in the vector-space. Assuming that homophily of related concepts in the vector space is desirable, our approach tends to improve the quality of embeddings. This pilot study shows that non-biomedical synonym replacement tends to improve the quality of embeddings of biomedical concepts using the Word2Vec algorithm. We have implemented our approach in a freely available Python package available at https://github.com/TheJacksonLaboratory/wn2vec.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.