Abstract

Let G=(V,E) be a directed graph and let P be a shortest path from s to t in G. In the replacement paths problem we are required to find, for every edge e on P, a shortest path from s to t in G that avoids e. We present the first non-trivial algorithm for computing replacement paths in unweighted directed graphs (and in graphs with small integer weights). Our algorithm is Monte-Carlo and its running time is ${\tilde O}(m\sqrt{n})$. Using the improved algorithm for the replacement paths problem we get an improved algorithm for finding the ksimple shortest paths between two given vertices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.