Abstract

Current renal substitution therapy with hemodialysis or hemofiltration has been the only successful long-term ex vivo organ substitution therapy to date. Although this approach is life sustaining, it is still unacceptably suboptimal with poor clinical outcomes of patients with either chronic end-stage renal disease or acute renal failure. This current therapy utilizes synthetic membranes to substitute for the small solute clearance function of the renal glomerulus but does not replace the transport, metabolic, and endocrinologic functions of the tubular cells. The addition of tubule cell replacement therapy in a tissue-engineered bioartificial kidney comprising both biologic and synthetic components will likely optimize renal replacement to improve clinical outcomes. This report demonstrates that the combination of a synthetic hemofiltration device and a renal tubule cell therapy device containing porcine renal tubule cells in an extracorporeal perfusion circuit successfully replaces filtration, transport, metabolic, and endocrinologic functions of the kidney in acutely uremic dogs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.