Abstract

Replication initiator 1 (Repin1) gene encodes for a zinc-finger protein and has been implicated in the regulation of adipocyte cell size and glucose transport in vitro. Here, we investigate the consequences of reduced adipose tissue (AT) Repin1 expression in vivo. We have inactivated the Repin1 gene in adipose tissue (iARep-/-) at an age of 4 weeks using tamoxifen-inducible gene targeting strategies on the background of C57BL/6NTac mice. Furthermore, we differentiated human primary adipocytes derived from subcutaneous AT in vitro and knocked down REPIN1 using siRNA technique to measure glycerol release. Conditional Repin1 inactivation results in decreased AT mass, smaller adipocytes in both, subcutaneous and epigonadal AT compared to controls. Compared to controls, iARep-/- mice were more insulin sensitive, had better glucose tolerance and lower LDL-, HDL- and total cholesterol. Significantly lower AT expression of the Repin1 target genes Cd36 and Lcn2 may contribute to the phenotype of iARep-/- mice. Knockdown of REPIN1 in human in vitro differentiated adipocytes revealed an increased glycerol release. In conclusion, deficiency of Repin1 in AT causes alterations in AT morphology and function, which may underlay lower body weight and improved parameters of insulin sensitivity, glucose and lipid metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.