Abstract

Quantum coherence control of two-pulse photon echoes has been demonstrated for a rephasing halt, resulting in storage-time extension using atom phase-controlled optical deshelving (optical locking) in a backward propagation scheme for the additional benefit of echo intensity enhancement. Compared with conventional forward two-pulse photon echoes, the backward two-pulse photon echo efficiency is enhanced by 15-fold even in a dilute sample, and the storage time is lengthened by spin dephasing time accelerated by spin inhomogeneous broadening. The mechanism of delayed photon echoes via optical locking is due to the temporal hold of the rephasing process by coherent population transfer to a robust spin state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.