Abstract

In this paper, a dual neural network, LVI (linear variational inequalities)-based primal-dual neural network and simplified LVI-based primal-dual neural network are presented for online repetitive motion planning (RMP) of redundant robot manipulators (with a four-link planar manipulator as an example). To do this, a drift-free criterion is exploited in the form of a quadratic performance index. In addition, the repetitive-motion-planning scheme could incorporate the joint physical limits such as joint limits and joint velocity limits simultaneously. Such a scheme is finally reformulated as a quadratic program (QP). As QP real-time solvers, the aforementioned three kinds of neural networks all have piecewise-linear dynamics and could globally exponentially converge to the optimal solution of strictly-convex quadratic-programs. Furthermore, the neural-network based RMP scheme is simulated based on a four-link planar robot manipulator. Computer-simulation results substantiate the theoretical analysis and also show the effective remedy of the joint angle drift problem of robot manipulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.