Abstract

The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.

Highlights

  • Mild traumatic brain injuries are the most common form of closed head injury [1] and may be asymptomatic or result in concussion [2]

  • Mice subjected to Mild traumatic brain injuries (mTBI) in the 1-IMP, 5-IMP and 15-IMP groups showed no signs of convulsions or physical stress following impacts, indicating that our model sufficiently mimicked the mild impact forces typically seen in sub-concussive injury

  • righting reflex (RR) latency in the 5-IMP group was significantly increased compared to control throughout the entire impact schedule (p

Read more

Summary

Introduction

Mild traumatic brain injuries (mTBI) are the most common form of closed head injury [1] and may be asymptomatic or result in concussion [2]. Symptoms generally resolve spontaneously within a couple of days, some patients report persistent cognitive dysfunction [3]. An emerging concept in mTBI research is the role of repetitive subconcussive impacts, rather than frank concussions, in driving neurodegeneration [4]. Repetitive mTBI inflammation and excitotoxic mRNA expression

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call