Abstract
Operational problems with robot manipulators in space relate to several factors, one most importantly being structural flexibility and subsequently significant difficulties with the control systems, especially, position control. A control strategy is devised for positioning the endpoint of a two-link robot manipulator modeled with assumed modes flexible dynamics repetitively tracking a square trajectory. The dominant assumed modes of vibration are determined for Euler-Bernoulli cantilever beam boundary conditions then, coupled with the nonlinear dynamics for rigid links to fonn an Euler-Lagrange inverse flexible dynamics robot model. A Jacobian transpose control law actuates the robot links. While repetitive tracking alone achieves no improvement in control precision, adapting the control law by a fuzzy logic system achieves consistent tracking precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.