Abstract

The crystal structure of a collagen-model peptide [(Pro-Pro-Gly)(9)](3) has been determined at 1.33 A resolution. Diffraction data were collected at 100 K using synchrotron radiation, which led to the first structural study of [(Pro-Pro-Gly)(n)](3) under cryogenic conditions. The crystals belong to the P2(1) space group with cell parameters of a = 25.95, b = 26.56, c = 80.14 Angstroms and beta = 90.0 degrees. The overall molecular conformation was consistent with the left-handed 7/2-helical model with an axial repeat of 20 A for native collagen. A total of 332 water molecules were found in an asymmetric unit. Proline residues in adjacent triple-helices exhibited three types of hydrophobic interactions. Furthermore, three types of hydrogen-bonding networks mediated by water molecules were observed between adjacent triple-helices. These hydrophobic interactions and hydrogen-bonding networks occurred at intervals of 20 Angstroms along the c-axis based on the previous sub-cell structures [(Pro-Pro-Gly)(n)](3) (n = 9, 10), which were also seen in the full-cell structure of [(Pro-Pro-Gly)(10)](3). Five proline residues at the Y position in the X-Y-Gly triplet were found in a down-puckering conformation, this being inconsistent with the recently proposed propensity-based hypothesis. These proline residues were forced to adopt opposing puckering because of the prevailing hydrophobic interaction between triple-helices compared with the Pro:Pro stacking interaction within a triple-helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.