Abstract

Techniques developed for determining summed encoder feedback in conjunction with the leaky integrator and variable-gamma models for repetitive firing are applied to spike train data obtained from the slowly adapting crustacean stretch receptor and the eccentric cell of Limulus. Input stimuli were intracellularly applied currents. Analysis of data from cells stringently selected by reproducibility criteria gave a consistent picture for the dynamics of repetitive firing. The variable-gamma model with appropriate summed feedback was most accurate for describing encoding behavior of both cell types. The leaky integrator model, while useful for determining summed feedback parameters, was inadequate to account for underlying mechanisms of encoder activity. For the stretch receptor, two summed feedback processes were detected: one had a short time constant; the other, a long one. Appropriate tests indicated that the short time constant effect was from an electrogenic sodium pump, and the same is presumed for the long time constant summed feedback. Both feedbacks show seasonal and/or species variations. Short hyperpolarizing pulses inhibited the feedback from the long time constant process. The eccentric cell also showed two summed feedback processes: one is due to self inhibition, the other is postulated to be a short time constant electrogenic sodium pump similar to that described in the stretch receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.