Abstract

Mesothelioma is an incurable form of cancer located most commonly in the pleural lining of the lungs and is associated almost exclusively with the inhalation of asbestos. The binding of asbestos to epidermal growth factor receptor (EGFR), a transmembrane signal protein, has been proposed as a trigger for downstream signaling of kinases and expression of genes involved in cell proliferation and inhibition of apoptosis. Here, we investigate the molecular binding of EGFR to crocidolite (blue asbestos; Na2(Fe(2+),Mg)3Fe2(3+)Si8O22(OH)2) in buffer solution. Atomic force microscopy measurements revealed an attractive force of interaction (i.e., bond) as EGFR was pulled from contact with long fibers of crocidolite. The rupture force of this bond increased with loading rate. According to the Bell model, the off-rate of bond dissociation (k(off)) for EGFR was 22 s(-1). Similar experiments with riebeckite crystals, the nonasbestiform variety of crocidolite, yielded a k(off) of 8 s(-1). These k(off) values on crocidolite and riebeckite are very rapid compared to published values for natural agonists of EGFR like transforming growth factor and epidermal growth factor. This suggests binding of EGFR to the surfaces of these minerals could elicit a response that is more potent than biological hormone or cytokine ligands. Signal transduction may cease for endogenous ligands due to endocytosis and subsequent degradation, and even riebeckite particles can be cleared from the lungs due to their short, equant habit. However, the fibrous habit of crocidolite leads to lifelong persistence in the lungs where aberrant, repetitious binding with EGFR may continually trigger the activation switch leading to chronic expression of genes involved in oncogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call