Abstract

Alcoholism causes various maladaptations in the central nervous system, including the neuroimmune system. Studies of alcohol-induced dysregulation of the neuroimmune system generally focus on alcohol dependence and brain damage, but our previous research indicates that repetitive binge-like consumption perturbs cytokines independent of cell death. This paper extends that research by examining the impact of binge-like consumption on microglia in the hippocampus and the amygdala. Microglia were assessed using immunohistochemistry following binge-like ethanol consumption based on Drinking-in-the-Dark model. Immunohistochemistry results showed that binge-like ethanol consumption caused an increase in Iba-1 immunoreactivity and the number of Iba-1+ cells after one Drinking-in-the-Dark cycle. However, after three Drinking-in-the-Darkcycles, the number of microglia decreased in the hippocampus. We showed that in the dentate gyrus, the average immunoreactivity/cell was increased following ethanol exposure despite the decrease in number after three cycles. Likewise, Ox-42, an indicator of microglia activation, was upregulated after ethanol consumption. No significant effects on microglia number or immunoreactivity (Iba-1 nor Ox-42) were observed in the amygdala. Finally, ethanol caused an increase in the expression of the microglial gene Aif-1 during intoxication and ten days into abstinence, suggesting persistence of ethanol-induced upregulation of microglial genes. Altogether, these findings indicate that repetitive binge-like ethanol is sufficient to elicit changes in microglial reactivity. This altered neuroimmune state may contribute to the development of alcohol use disorders.

Highlights

  • Excessive alcohol consumption has been linked to many social and health consequences, including the development of alcohol use disorders (AUDs) [1, 2]

  • Alcohol abuse can elicit maladaptation in various biologic systems, our work focuses on alcohol-induced microglial reactivity after repetitive binge-like alcohol consumption in the Drinking-in-theDark (DID) model to recapitulate human binge consumption [8]

  • The major findings of this paper are that: (1) binge-like ethanol consumption results in changes in the number, morphology, and immunological status of microglia, (2) the hippocampus is more sensitive to alcoholinduced microglial effects than the amygdala, and (3) repeated exposure results in a persistent change in microglial gene expression

Read more

Summary

Introduction

Excessive alcohol consumption has been linked to many social and health consequences, including the development of alcohol use disorders (AUDs) [1, 2]. Binge drinking is a form of heavy ethanol consumption that results in blood ethanol concentrations (BECs) greater than 80 mg/dL [4]. This is normally achieved with 4–5 drinks within two hours. Many theorize that repetitive binge drinking fundamentally changes normal neurobiological functions altering the pharmacological properties of alcohol and contributing to the development of alcohol dependence [5,6,7]. Manipulating the neuroplastic changes that occur due to binge drinking may be vital in curbing excessive alcohol consumption and reducing the propensity of AUD development. Alcohol abuse can elicit maladaptation in various biologic systems, our work focuses on alcohol-induced microglial reactivity after repetitive binge-like alcohol consumption in the Drinking-in-theDark (DID) model to recapitulate human binge consumption [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.