Abstract

Upon repetition, certain stimuli induce reduced neural responses (i.e., repetition suppression), whereas others evoke stronger signals (i.e., repetition enhancement). It has been hypothesized that stimulus properties (e.g., visibility) determine the direction of the repetition effect. Here, we show that the very same stimuli can induce both repetition suppression and enhancement, whereby the only determining factor is the number of repetitions. Repeating the same, initially novel low-visible pictures of scenes for up to 5 times enhanced the blood oxygen level-dependent (BOLD) response in scene-selective areas, that is, the parahippocampal place area (PPA) and the transverse occipital sulcus (TOS), presumably reflecting the strengthening of the internal representation. Additional repetitions (6-9) resulted in progressively attenuated neural responses indicating a more efficient representation of the now familiar stimulus. Behaviorally, repetition led to increasingly faster responses and higher visibility ratings. Novel scenes induced the largest BOLD response in the PPA and also higher activity in yet another scene-selective region, the retrospenial cortex (RSC). We propose that 2 separable processes modulate activity in the PPA: one process optimizes the internal stimulus representation and involves TOS and the other differentiates between familiar and novel scenes and involves RSC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call