Abstract
In tasks requiring judgments about visual stimuli, humans exhibit repetition priming, responding with increased speed when a stimulus is repeated. Repetition priming might depend on repetition suppression, a phenomenon first observed in monkey inferotemporal cortex (IT) whereby, when a stimulus is repeated, the strength of the neuronal visual response is reduced. If the reduction resulted in sharpening of the cortical representation of the stimulus, and did not just scale it down, then speeded processing might result. To explore the relation between repetition priming and repetition suppression, we monitored neuronal activity in IT while monkeys performed a symmetry decision task. We found 1) that monkeys exhibit repetition priming, 2) that IT neurons simultaneously exhibit repetition suppression, 3) that repetition priming and repetition suppression do not vary in a significantly correlated fashion across trials, and 4) that repetition suppression scales down the representation of the stimulus without sharpening it. We conclude that repetition suppression accompanies repetition priming but is unlikely to be its cause.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.