Abstract

Summary With the advances in pulsed laser systems, microscopic imaging techniques such as multiphoton and pump-probe fluorescence microscopy have developed into effective tools for investigating intensity and time-resolved phenomena inside biological systems. However, pulsed lasers used in these techniques usually are commercial systems with repetition frequencies of around 80 MHz. While these systems have proven to be adequate for multiphoton and pump-probe microscopic imaging applications, the temporal separation of the laser pulse train (around 12.5 ns) is long compared to the fluorescence lifetimes of many common fluorescence species. In this work, we present the designs of repetition rate multipliers based on passive optical components that can be used to increase the efficiency in multiphoton and pump-probe fluorescence microscopy. Depending on the lifetime of fluorescence molecules under investigation, the passive repetition rate multiplier can increase the duty cycle of multiphoton or pump-probe microscopy up to fourfold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call