Abstract

Cerqueira, MS, Lira, M, Mendonça Barboza, JA, Burr, JF, Wanderley e Lima, TB, Maciel, DG, and De Brito Vieira, WH. Repetition failure occurs earlier during low-load resistance exercise with high but not low blood flow restriction pressures: a systematic review and meta-analysis. J Strength Cond Res XX(X): 000-000, 2021-High-load and low-load resistance training (LL-RT) performed to failure are considered effective for improving muscle mass and strength. Alternatively, LL-RT with blood flow restriction (LL-BFR) may accelerate repetition failure and has been suggested to be more time efficient than LL-RT. This study explores the evidence for the effects of LL-BFR vs. LL-RT on repetition failure. A systematic literature search was conducted in the PubMed, CINAHL, Web of Science, CENTRAL, Scopus, SPORTDiscus, and PEDro databases. Meta-analyses of mean differences and 95% confidence intervals (CIs) were performed using a random-effects model. Subgroup analyses were conducted for both the high and low blood flow restriction pressures. The search identified n = 10 articles that met the inclusion criteria. The meta-analysis comprised a total of 218 healthy subjects. Low-load resistance training with blood flow restriction with high pressures (≥50% arterial occlusion pressure [AOP]) precipitate repetition failure in ∼14.5 fewer repetitions (95% CI -19.53 to -9.38) compared with LL-RT, whereas the use of low pressures (<50% AOP) stimulated repetition failure with ∼1.4 fewer repetitions (95% CI -3.11 to 0.37); however, this difference was not statistically significant. Repetition failure has been demonstrated to be an important normalizing variable when comparing the hypertrophic and strength effects resulting from resistance training and occurs earlier during low-load resistance exercise with high but not low blood flow restriction pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.