Abstract

Pure-tone hearing thresholds of a harbour seal (Phoca vitulina) were measured in air and underwater using behavioural psychophysical techniques. A 50-ms sinusoidal pulse was presented in both white-noise masked and unmasked situations at pulse repetition rates of 1, 2, 4, and 10/s. Test frequencies were 0.5, 1.0, 2.0, 4.0, and 8.0 kHz in air and 2.0, 4.0, 8.0, and 16.0 kHz underwater. Relative to 1 pulse/s, mean threshold shifts were −1, −3, and −5 dB at 2, 4, and 10 pulses/s, respectively. The threshold shifts from 1 to 10 pulses/s were significant (F = 12.457, df = 2,36, p < 0.001) and there was no difference in the threshold shifts between the masked and unmasked situations (F = 2.585; df = 1,50; p > 0.10). Broadband masking caused by meteorological or industrial sources will closely resemble the white-noise situation. At high calling rates, the numerous overlapping calls of some species (e.g., harp seal, Phoca groenlandica) present virtually continous "background noise" which also resembles the broadband white-noise masking situation. An implication of lower detection thresholds is that if a seal regularly repeats short vocalizations, the communication range of that call could be increased significantly (80% at 10 pulses/s). This could have important implications during the breeding season should storms or shipping noises occur or when some pinniped species become increasingly vocal and the background noise of conspecifics increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call