Abstract

Energy production for the maintenance of brain function fails rapidly with the onset of ischemia and is reinstituted with timely reperfusion. The key bioenergetic organelle, the mitochondrion, is strongly affected by a cascade of events occurring with ischemia and reperfusion. Enhanced production of reactive oxygen species, disruption of calcium homeostasis, and an inflammatory response are induced by reperfusion and have a profound effect on cellular bioenergetics in reversible stroke. The impact of perturbed bioenergetics on cellular homeostasis/function during and after ischemia are discussed. Because mitochondrial function can be compromised by derangements at more than one of the susceptible sites on this organelle, we propose that a combination therapy is needed for the restoration and maintenance of cellular bioenergetics after reperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.