Abstract

An unusual 1,3-hydrogen shift from the metal center to the Cβ atom of the C3-chain of the allenylidene ligand in a hydride-osmium(II)-allenylidene complex is the beginning of several interesting transformations in the cumulene. The hydride-osmium(II)-allenylidene complex was prepared in two steps, starting from the tetrahydride dimer [(Os(H···H){κ3-P,O,P-[xant(PiPr2)2]})2(μ-Cl)2][BF4]2 (1). Complex 1 reacts with 1,1-diphenyl-2-propyn-1-ol to give the hydride-osmium(II)-alkenylcarbyne [OsHCl(≡CCH=CPh2){κ3-P,O,P-[xant(PiPr2)2]}]BF4 (2), which yields OsHCl(=C=C=CPh2){κ3-P,O,P-[xant(PiPr2)2]} (3) by selective abstraction of the Cβ–H hydrogen atom of the alkenylcarbyne ligand with KtBuO. Complex 3 is metastable. According to results of DFT calculations, the migration of the hydride ligand to the Cβ atom of the cumulene has an activation energy too high to occur in a concerted manner. However, the migration can be catalyzed by water, alcohols, and aldehydes. The resulting alkenylcarbyne-osmium(0) intermediate is unstable and evolves into a 7:3 mixture of the hydride-osmium(II)-indenylidene OsHCl(=CIndPh){κ3-P,O,P-[xant(PiPr2)2]} (4) and the osmanaphthalene OsCl(C9H6Ph){κ3-P,O,P-[xant(PiPr2)2]} (5). Protonation of 4 with HBF4 leads to the elongated dihydrogen complex [OsCl(η2-H2)(=CIndPh){κ3-P,O,P-[xant(PiPr2)2]}]BF4 (6), while the protonation of 5 regenerates 2. In contrast to 4, complex 6 evolves to a half-sandwich indenyl derivative, [Os(η5-IndPh)H{κ3-P,O,P-[xant(PiPr2)2]}][BF4]Cl (7). Phenylacetylene also provokes the 1,3-hydrogen shift in 3. However, it does not participate in the migration. In contrast to water, alcohols, and aldehydes, it stabilizes the resulting alkenylcarbyne to afford [Os(≡CCH=CPh2)(η2-HC≡CPh){κ3-P,O,P-[xant(PiPr2)2]}]Cl (8).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call