Abstract
Pruss (Thought 1:81–89, 2012) uses an example of Lester Dubins to argue against the claim that appealing to hyperreal-valued probabilities saves probabilistic regularity from the objection that in continuum outcome-spaces and with standard probability functions all save countably many possibilities must be assigned probability 0. Dubins’s example seems to show that merely finitely additive standard probability functions allow reasoning to a foregone conclusion, and Pruss argues that hyperreal-valued probability functions are vulnerable to the same charge. However, Pruss’s argument relies on the rule of conditionalisation, but I show that in examples like Dubins’s involving nonconglomerable probabilities, conditionalisation is self-defeating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.