Abstract

Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged.

Highlights

  • Anopheles gambiae (Giles, 1902) complex are major vectors responsible for the transmission of Plasmodium spp., Plasmodium falciparum, which is the most hazardous protozoan parasite causing malaria infection in humans [1]

  • The broad aim of our study was to adapt the HITSS, originally developed for Aedes aegypti, [6,19,20,21] to perform assays on An. gambiae, to: 1) assess any spatial repellent, contact irritant and/or toxic effects of 20 plant extracts, 2) determine whether the influence of these extracts is concentration-dependent and 3) assess the potential of the selected candidates by comparing their effects with those induced by pyrethroid or neurotoxic insecticides

  • The insecticide susceptibility of the Kisumu strain was confirmed with World Health Organization (WHO) diagnostic doses (i.e. 4% DDT, 0.75% permethrin) and is controlled every 4 months as recommended by the iso 9001 norm

Read more

Summary

Introduction

Anopheles gambiae (Giles, 1902) complex are major vectors responsible for the transmission of Plasmodium spp., Plasmodium falciparum, which is the most hazardous protozoan parasite causing malaria infection in humans [1]. It still remains one of the most severe human diseases across the world, the overall incidence of malaria has fallen by 17% between 2010 and 2011 This decrease has been ascribed to an enormous progress in the control of malaria due to the use of efficient tools, such as rapid diagnostic tests in combination with treatments like artemisinin-based combination therapy (ACT) against P. falciparum, and control with indoor residual spraying or long-lasting insecticide-treated mosquito nets. These strategies have contributed to improved public health in many countries [3]. Pyrethroids have four main effects on mosquitoes causing: (i) a spatial repellent effect, i.e. deterrence of adults from entering treated rooms; (ii) a contact irritant effect, i.e. short-lived settling of mosquitoes on treated bednets or walls; (iii) an anti-feedant effect, i.e. blood feeding inhibition of female mosquitoes and 4) toxic effect, i.e. a knock down and mortality effect [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call