Abstract
This study investigated the behavioral responses and toxicity of three basic amines: 1-methylpiperazine, 1-methylpyrrolidine, and triethylamine (TEA), compounds suggested previously to be anosmic in vapor exposures to caged mosquitoes. These compounds showed repellency of Aedes aegypti mosquitoes, followed by flightlessness, knockdown, and paralysis, all increasing with exposure time and dosage. Electrophysiological experiments showed a blocking effect on nerve discharge of the Drosophila melanogaster larval central nervous system (CNS) with little evidence of hyperexcitation. Blockage of voltage-gated (Kv2) potassium channel currents under patch clamp occurred at similar concentrations. Involvement of K+ channels in the action of basic amines was supported by behavior and CNS recordings of a Shaker Kv1 mutant exposed to TEA, where instead of blockage, a hyperexcitation of nerve firing was observed. Experiments on cockroach leg mechanoreceptors demonstrated neuronal excitation and on mosquito antennae strong electroantennogram (EAG) signals with an augmentation of blank air responses after a single puff of basic amine. The neurophysiological effects of basic amines are consistent with K+ channel block, whereas the antennal EAG response was not obviously associated with anosmia. The low-dose effects of basic amines appear to be repellency and bradykinesia. Overall, the findings provide key insights into the mechanisms underlying the biological activity of basic amines. © 2024 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.