Abstract

Soil water repellency is a common phenomenon which develops when surface soils become dry in summer and autumn. It is claimed that repellency is likely to result in a lower infiltration rate and a concomitant increase in surface runoff, particularly on slopes. This study quantifies the effect of water repellency on runoff from a series of small plots on a range of slopes (20° and 30°) and aspects (N, S and E) in a hilly landscape in the south-east of the North Island of New Zealand. The plots (1 m wide and 2 m long) were set up to capture runoff via a slotted PVC pipe and measure it using tipping bucket apparatus: at each of the slope/aspect locations there were duplicate plots. A meteorological station was also established at the site along with TDR probes to measure soil moisture down to 300 mm depth. When moist, the soil at the site had a very high infiltrability (>1.5 mm/min). On nine occasions, runoff was measured (ranging from 1 to 59% of rainfall) when the soil surface was dry and rainfall was intense (greater than 0.1 mm/min). However, during the two-year study period, this repellency-induced runoff equated to only 5% of the total rainfall. Furthermore, the infiltration rate of initially dry, repellent soil (ranging from 0.2 to 0.6 mm/min) partly recovered over a ten-minute period (0.6–1.0 mm/min) and, with sufficient rainfall, repellency completely disappeared within two days. The transitory nature of water repellency was confirmed in an experiment on large soil slabs conducted in the laboratory where repellency-induced runoff was observed to largely disappear over a period of 30 min. Overall, it is concluded that soil water repellency does not play a major role in the soil water balance of the hill country at the study site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.