Abstract
The findings of a number of studies investigating the effects of excessive sound on hearing have indicated that the correspondence between behavioral, physiological, and histological measures of noise-induced hearing loss may be markedly dependent upon the sensitivity of the particular measure. Recent studies demonstrating significant changes in the responses of single auditory neurons following brief exposures to pure tones suggest that single-unit activity may be a sensitive indicator of physiological insult to the organ of Corti's sensory cells. In addition, the long-lasting nature of the changes in neural responsiveness suggests that each temporary threshold shift (TTS) episode may produce an increment of damage to the ear that eventually contributes to a measurable permanent threshold shift (PTS). A logical extension of this implication is the proposal that repeated episodes of TTS would first affect single-unit thresholds, and that such damage would eventually manifest itself as PTS. A test of this notion was performed by repeatedly exposing monkeys to short-lasting TTS sounds for many months. Behavioral thresholds were monitored using a reaction-time task before and after each inducement of TTS. Two subjects participated in exposure sessions for 18 months, while the remaining monkey was exposed to identical stimuli for 6 months. At the end of behavioral testing, the monkeys were prepared for chronic recording from single cells of the cochlear nucleus. Following the recording period, cochleas were prepared for examination as plastic-embedded whole mounts. Flat preparations of the cochlear duct were made and the position and extent of damage to the organ of Corti and myelinated nerve fibers were determined. No elevations in behavioral threshold were noted for the monkey receiving 6 months of sound-exposure experience, while for both subjects exposed for 18 months, a significant high-frequency hearing loss became apparent during the final months of exposure. For damaged ears, the thresholds of ipsilateral cochlear nucleus units were elevated for characteristic frequencies (CFs) corresponding to the frequency regions where behavioral thresholds were shifted. Thresholds for units with high-frequency CFs in the animal exposed for 6 months also demonstrated a loss in sensitivity. Histological examination of the cochleas of monkeys with permanent hearing losses revealed corresponding damage to the high-frequency region of the organ of Corti. The monkey exposed for 6 months, which demonstrated only elevated unit thresholds, also had high-frequency lesions.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.