Abstract

Intestinal intraepithelial lymphocytes (IEL), one of the major effector components in the mucosal immune system, are phenotypically and functionally distinct from thymic and peripheral T cells. To investigate the effect of repeated stress on the number and function of IEL, we exposed male C3H/HeN mice to mild electric foot shock for 30 min/day for 5 consecutive days. Immediately after the final foot shock stress, the blood, spleen, thymus and small intestine of each of the mice were obtained. As a functional measure, we evaluated interferon (IFN)- gamma production by IEL, since IFN-gamma is a key immunomodulating cytokine in mucosal immune responses. Serum corticosterone level was elevated immediately after foot shock stress. There were no significant changes in the number of whole IEL and CD3+ IEL subsets after the stress. In contrast, the stress led to a significant decrease in the total number of thymocytes, particularly the reduction in the number of CD4+CD8+ thymocytes. Thymocytes expressed the highest level of intracellular glucocorticoid receptor (GR), followed by splenocytes and IEL. The foot shock stress induced a marked suppression of IFN-gamma production by IEL, when stimulated with immobilized anti-CD3 monoclonal antibody. Furthermore, corticosterone suppressed the IFN-gamma production by cultured IEL, which was prevented by Mifepristone (RU486), a GR antagonist. In summary, repeated foot shock stress did not alter the numbers of IEL and CD3+ IEL subsets, but suppressed IFN-gamma production by IEL, which was probably mediated by the elevated corticosterone. We therefore propose that stress influences host defense by suppressing the production of IFN-gamma in IEL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.