Abstract

The aim of the study was to determine anaerobic capacity and characterize changes in repeated sprint ability (RSA) within youth elite handball players. For this study, 142 male athletes (17.1 ± 0.9 years) were recruited from a handball sports high school and performed the RSA test on a cycle ergometer, including five 6 s all-out efforts separated by 24 s passive breaks. Maximal (Pmax) and mean (Pmean) power, highest (Wmax), and total work (Wtot) as well as power (Pdec) and work (Wdec) decrement were measured. Significant differences in RSA were noted in relation to age (greater values of Pmax, Pmean, Wtot, Wdec, and Pdec in U19 than U17 as well as greater values of Pmax, Wtot, Wmax, Wdec, and Pdec in U19 than U16 (p < 0.05)) and playing position (wing players had greater Wtot than pivot, 269 vs. 243 (J/kg) (p < 0.05), and wing players differed significantly in absolute and relative power from athletes of other positions). RSA depends on playing position and age in groups of youth handball players and the RSA test can be helpful in the selection of athletes for a playing position. The article introduces normative values for elite youth handball players, empowering coaches in the evaluation of anaerobic abilities and selection.

Highlights

  • The repeated sprint ability (RSA) test is widely applied in team and racket sports

  • The strength of this work is that the results indicate the relationship between age, handball playing position, and specific characteristics of anaerobic performance and anthropometric features

  • The conclusion drawn from the performed analysis is that age and playing position have a significant impact on physical fitness in handball

Read more

Summary

Introduction

The repeated sprint ability (RSA) test is widely applied in team and racket sports. Girard et al (2011) noted that the time dedicated to sprint in team sports accounts for 1 to 4% of the effective playtime. Within the RSA test maximum values of variables defining the ability to repeat sprints are measured. With regard to running tests this accounts for the time needed to cover the distance and, in the case of tests performed on a cycle ergometer, the maximum power. The fatigue index is measured as the percentage speed decrease in the subsequent part of the running distance and the percentage decrease in power or work in repeated trials performed on a cycle ergometer [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call