Abstract

PurposeːSevoflurane exposure in the neonatal period of rodent animals was reported to be associated with neuroendocrine dysregulations later in life. We tested the hypothesis that repeated sevoflurane exposure in neonatal rats enhances the sensitivity to pain and acute traumatic stress response later in juvenile life and investigated whether the neonatal brain depolarizing γ-aminobutyric acid type A receptor (GABAAR) activity is involved in mediating these abnormalities.MethodsːThe postnatal 6 days (P6) Sprague-Dawley male rat pups pretreated with vehicle or the NKCC1 inhibitor, bumetanide, received sequential exposures to 2.1% sevoflurane exposure for 2 hours daily in 3 consecutive days.ResultsːThe results showed that repeated exposures to sevoflurane in neonatal rats significantly reduced the paw withdrawal thermal latency (PWTL) at P9, P45. Repeated exposures to sevoflurane in neonatal rats did not significantly affect the basal secretion of serum corticosterone at juvenile period P45, whereas the level of corticosterone for neonatal sevoflurane-exposed rats at P45 was significantly higher than the CON group after subject to conditioned fear traumatic stress (CFTS). The resulting NKCC1/KCC2 mRNA ratio was significantly increased immediately after the neonatal rats received the last sevoflurane exposure, which was alleviated by pretreated with the NKCC1 inhibitor bumetanide.ConclusionːRepeated exposures to sevoflurane in neonatal rats enhanced the sensitivity to pain and acute traumatic stress response in juvenile life. The neonatal brain depolarizing GABAAR activity is involved in mediating these abnormalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.