Abstract

BackgroundEspecially in disease conditions, platelets can encounter activating agents in circulation. ObjectivesTo investigate the extent to which previously activated platelets can be reactivated and whether in-and reactivation applies to different aspects of platelet activation and thrombus formation. MethodsShort-and long-term effects of glycoprotein VI (GPVI) and G protein-coupled receptor (GPCR) stimulation on platelet activation and aggregation potential were compared via flow cytometry and plate-based aggregation. Using fluorescence and electron microscopy, we assessed platelet morphology and content, as well as thrombus formation. ResultsAfter 30 minutes of stimulation with thrombin receptor activator peptide 6 (TRAP6) or adenosine diphosphate (ADP), platelets secondarily decreased in PAC-1 binding and were less able to aggregate. The reversibility of platelets after thrombin stimulation was concentration dependent. Reactivation was possible via another receptor. In contrast, cross-linked collagen-related peptide (CRP-XL) or high thrombin stimulation evoked persistent effects in αIIbβ3 activation and platelet aggregation. However, after 60 minutes of CRP-XL or high thrombin stimulation, when αIIbβ3 activation slightly decreased, restimulation with ADP or CRP-XL, respectively, increased integrin activation again. Compatible with decreased integrin activation, platelet morphology was reversed. Interestingly, reactivation of reversed platelets again resulted in shape change and if not fully degranulated, additional secretion. Moreover, platelets that were previously activated with TRAP6 or ADP regained their potential to contribute to thrombus formation under flow. On the contrary, prior platelet triggering with CRP-XL was accompanied by prolonged platelet activity, leading to a decreased secondary platelet adhesion under flow. ConclusionThis work emphasizes that prior platelet activation can be reversed, whereafter platelets can be reactivated through a different receptor. Reversed, previously activated platelets can contribute to thrombus formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call