Abstract

Volatile anesthetics elicit neurodevelopmental toxicity in rodents and primates and lead to more exaggerated anxiety-like behavior in response to future stress. Anxiety and fear are closely correlated and maladaptive fear-associated learning is regarded as the core mechanism underlying anxiety-related disorders. However, little is known about the interaction between early-life anesthetic exposure and future stress and the accompanying effect on fear-associated learning. In the present study, we evaluated the alterations in fear-associated learning (fear acquisition and extinction) occurring in mice receiving repeated neonatal isoflurane exposure and chronic variable stress (CVS) successively through a series of fear conditioning, fear reinforcing, and fear extinction paradigms. The corticosterone (CORT) response during CVS and the immunohistochemical levels of ΔFosB and c-Fos expression in the basolateral amygdala (BLA) and the hippocampal dentate gyrus (DG) after the extinction retrieval test were also investigated. The results showed that neonatal isoflurane exposure could increase CORT levels following the first diurnal CVS procedure, but not after completion of the whole CVS paradigm. Neonatal isoflurane exposure exerted a repressive effect on fear acquisition, in contrast to that seen with CVS. Neonatal isoflurane exposure and CVS both exerted suppressive effects on fear extinction and there was a significant synergy between them. Furthermore, neonatal isoflurane exposure facilitated CVS-mediated ΔFosB accumulation in the BLA and the hippocampal DG, which may have been responsible for c-Fos expression deficits and fear extinction impairment. Collectively, these findings contribute to the understanding of the interaction between early-life anesthetic exposure and future stress, as well as the accompanying behavioral alterations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call