Abstract
To determine if muscle biopsies can be repeated using a single small (5-6 mm) skin incision without inducing immediate MAPK activation or inflammation in the noninjured areas, the phosphorylation of ERK1/2, p38-MAPK, c-Jun NH(2)-terminal kinases (JNKs), IκBα, IKKα, and signal transducer and activator of transcription 3 (STAT3) was examined concurrent with IL-6 mRNA in six muscle biopsies obtained from the vastus lateralis of five men. Four biopsies were obtained through the same incision (5-6 mm) from the right leg (taken at 0, 30, 123, and 126 min) and another two each from new incisions performed in the left leg (at 31 and 120 min), while the subjects rested supine. The first three biopsies from the right leg were taken ∼3 cm apart from prebiopsied areas. The last biopsy was obtained from the same point from which the second biopsy was sampled. The three biopsies performed through the same skin incision from noninjured muscle areas showed similar levels of ERK1/2, p38-MAPK, JNK, IKKα, IκBα, and STAT3 phosphorylation and similar IL-6 mRNA content. There were no significant differences in the levels of ERK1/2, p38-MAPK, JNK, IKKα, and IκBα phosphorylation between the mean of the three biopsies obtained from the same incision and the sixth biopsy obtained from an injured area. STAT3 phosphorylation was increased by ∼3.5-fold in the sixth biopsy compared with the mean the three biopsies obtained from the same incision (P < 0.05), and IL-6 mRNA content was increased by 1.8-fold (P < 0.05). In summary, repeated muscle biopsies can be performed through a single 5- to 6-mm skin incision without eliciting muscle signaling through cascades responding to cellular stress, inflammation, or muscle damage. STAT3 phosphorylation is an early event in the healing response to muscle injury, probably mediated by the autocrine production of IL-6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.