Abstract
This paper investigates the opportunity for a repetition coded multi-carrier index keying—orthogonal frequency division multiplexing (MCIK-OFDM), termed repeated MCIK-OFDM (ReMO), which can provide superior performance over existing schemes at the same spectral efficiency. Unlike the classical scheme, the proposed scheme activates a subset of sub-carriers and modulates them with the same $M$ -ary data symbol, while additional information is conveyed by the active sub-carrier indices. This approach not only provides the frequency diversity gains in the $M$ -ary symbol detection but also improves the index detection, leading to considerable improvement in the transmit diversity. For performance analysis, we derive tight closed-form expressions for the symbol error probability and the bit error rate, under both perfect and imperfect channel state information (CSI). These expressions provide insight into the achievable performance gains, system designs, and impacts of various CSI conditions. Finally, simulation results are given to illustrate the superior performance achieved by our scheme over existing schemes under different CSI uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.