Abstract
The developing brain is vulnerable to social defeat during the juvenile period. As complements of human studies, animal models of social defeat provide a straightforward approach to investigating the functional and neurobiological consequences of social defeats. Taking advantage of agonist behavior and social defeat in male golden hamster, a set of 6 experiments was conducted to investigate the consequences at multiple levels in young adulthood resulting from repeated, intermittent social defeats or “social threats” across the entire juvenile period. Male hamsters at postnatal day 28 (P28) were randomly assigned to either the social defeat, “social threat”, or arena control group, and they correspondingly received a series of nine social interaction trials (i.e., either social defeat, “social threat”, or arena control conditions) from P33 to P66. At the behavioral level (Experiment 1), we found that repeated social defeats (but not “social threats”) significantly impacted locomotor activity in the familiar context and social interaction in the familiar/unfamiliar social contexts. At the physiological and hormonal levels (Experiments 2 and 3), repeated social defeat significantly enhanced the cortisol and norepinephrine concentrations in blood. Enlargement of the spleen was also found in the social defeat and “social threat” groups. At the immunological level (Experiment 4), the social defeat group showed lower levels of pro-inflammatory cytokines in the hypothalamus and hippocampus but higher concentration of IL-6 in the striatum compared to the other two groups. At the neurochemical level (Experiment 5), the socially defeated hamsters mainly displayed reductions of dopamine, dopamine metabolites, and 5-HT levels in the striatum and decreased level of 5-HT in the hippocampus. In Experiment 6, an increase in the spine density of hippocampal CA1 pyramidal neurons was specifically observed in the “social threat” group. Collectively, our findings indicate that repeated, intermittent social defeats throughout entire adolescence in hamsters impact their adult responses at multiple levels. Our results also suggest that the “social threat” group may serve as an appropriate control. This study further suggest that the alterations of behavioral responses and neurobiological functions in the body and brain might provide potential markers to measure the negative consequences of chronic social defeats.
Highlights
The juvenile period is characterized by the rapid development of the brain and the vulnerability of continually maturing brain regions to stress, which influences behavioral, emotional, and cognitive functions in both humans and animals (Romeo and McEwen, 2006; McCormick and Mathews, 2010)
They arrived at the animal facility of the Psychology Department, National Taiwan University, on postnatal day and were temporarily group-housed before being housed individually in ventilated polysulfone cages (34 cm long × cm wide × 16 cm high) containing corncob bedding a few days before the experiments
Social Context Before the first social interaction, the three groups showed no significant differences in the pre-test results
Summary
The juvenile period (or adolescence) is characterized by the rapid development of the brain and the vulnerability of continually maturing brain regions to stress, which influences behavioral, emotional, and cognitive functions in both humans and animals (Romeo and McEwen, 2006; McCormick and Mathews, 2010). It was reported that defeated mice in this behavioral paradigm increased the production of pro-inflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) in LPS-stimulated splenocyte cultures (Stark et al, 2001; Avitsur et al, 2002; Kinsey et al, 2007) and elicited alterations in the norepinephrine and serotonin levels within the prefrontal cortex (PFC), the hippocampus, and the amygdala (Jacobson-Pick et al, 2013). This behavioral paradigm, may not completely reflect a natural environment for social defeat (Tamashiro et al, 2005) because social defeats typically occur in a neutral social context or territory rather than in an animal’s burrow
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.