Abstract
Mammals withstand frequent and prolonged fasting periods due to hepatic production of glucose and ketone bodies. Because the fasting response is transcriptionally regulated, we asked whether enhancer dynamics impose a transcriptional program during recurrent fasting and whether this generates effects distinct from a single fasting bout. We found that mice undergoing alternate-day fasting (ADF) respond profoundly differently to a following fasting bout compared to mice first experiencing fasting. Hundreds of genes enabling ketogenesis are 'sensitized' (i.e. induced more strongly by fasting following ADF). Liver enhancers regulating these genes are also sensitized and harbor increased binding of PPARα, the main ketogenic transcription factor. ADF leads to augmented ketogenesis compared to a single fasting bout in wild-type, but not hepatocyte-specific PPARα-deficient mice. Thus, we found that past fasting events are 'remembered' in hepatocytes, sensitizing their enhancers to the next fasting bout and augment ketogenesis. Our findings shed light on transcriptional regulation mediating adaptation to repeated signals.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.