Abstract

High-frequency, low-amplitude whole-body vibration (WBV) is being used to treat a range of musculoskeletal disorders; however, there is surprisingly limited knowledge regarding its effect(s) on joint tissues. This study was undertaken to examine the effects of repeated exposure to WBV on bone and joint tissues in an in vivo mouse model. Ten-week-old male mice were exposed to vertical sinusoidal vibration under conditions that mimic those used clinically in humans (30 minutes per day, 5 days per week, at 45 Hz with peak acceleration at 0.3g). Following WBV, skeletal tissues were examined by micro-computed tomography, histologic analysis, and immunohistochemistry, and gene expression was quantified using real-time polymerase chain reaction. Following 4 weeks of WBV, intervertebral discs showed histologic hallmarks of degeneration in the annulus fibrosus, disruption of collagen organization, and increased cell death. Greater Mmp3 expression in the intervertebral disc, accompanied by enhanced collagen and aggrecan degradation, was found in mice exposed to WBV as compared to controls. Examination of the knee joints after 4 weeks of WBV revealed meniscal tears and focal damage to the articular cartilage, changes resembling osteoarthritis. Moreover, mice exposed to WBV also demonstrated greater Mmp13 gene expression and enhanced matrix metalloproteinase-mediated collagen and aggrecan degradation in articular cartilage as compared to controls. No changes in trabecular bone microarchitecture or density were detected in the proximal tibia. Our experiments reveal significant negative effects of WBV on joint tissues in a mouse model. These findings suggest the need for future studies of the effects of WBV on joint health in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call