Abstract

Elucidating the genetic basis of morphological changes in evolution remains a major challenge in biology. Repeated independent trait changes are of particular interest because they can indicate adaptation in different lineages or genetic and developmental constraints on generating morphological variation. In animals, changes to "hot spot" genes with minimal pleiotropy and large phenotypic effects underlie many cases of repeated morphological transitions. By contrast, only few such genes have been identified from plants, limiting cross-kingdom comparisons of the principles of morphological evolution. Here, we demonstrate that the REDUCED COMPLEXITY (RCO) locus underlies more than one naturally evolved change in leaf shape in the Brassicaceae. We show that the difference in leaf margin dissection between the sister species Capsella rubella and Capsella grandiflora is caused by cis-regulatory variation in the homeobox gene RCO-A, which alters its activity in the developing lobes of the leaf. Population genetic analyses in the ancestral C. grandiflora indicate that the more-active C. rubella haplotype is derived from a now rare or lost C. grandiflora haplotype via additional mutations. In Arabidopsis thaliana, the deletion of the RCO-A and RCO-B genes has contributed to its evolutionarily derived smooth leaf margin, suggesting the RCO locus as a candidate for an evolutionary hot spot. We also find that temperature-responsive expression of RCO-A can explain the phenotypic plasticity of leaf shape to ambient temperature in Capsella, suggesting a molecular basis for the well-known negative correlation between temperature and leaf margin dissection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.