Abstract

Anticipatory signal control in traffic networks adapts the signal timings with the aim of controlling the resulting (equilibrium) flows and route choice patterns in the network. This study investigates a method to support control decisions for successful applications in real traffic systems that operate repeatedly, for instance from day to day, month to month, etc. The route choice response to signal control is usually predicted through models; however this leads to suboptimality because of unavoidable prediction errors between model and reality. This paper proposes an iterative optimizing control method to drive the traffic network towards the real optimal performance by observing modeling errors and correcting for them. Theoretical analysis of this Iterative Optimizing Control with Model Bias Correction (IOCMBC) on matching properties between the modeled optimal solution and the real optimum is presented, and the advantages over conventional iterative schemes are demonstrated. A local convergence analysis is also elaborated to investigate conditions required for a convergent scheme. The main innovation is the calculation of the sensitivity (Jacobian) information of the real route choice behavior with respect to signal control variables. To avoid performing additional perturbations, we introduce a measurement-based implementation method for estimating the operational Jacobian that is associated with the reality. Numerical tests confirm the effectiveness of the proposed IOCMBC method in tackling modeling errors, as well as the influence of the optimization step size on the reality-tracking convergence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call