Abstract

Male Wistar rats (250-350 g) were injected (SC) daily with the putative selective dopamine D3 receptor agonist, 7-OH-DPAT (0.01, 0.10, or 1.0 g/kg) or vehicle for 10 days. Fifteen minutes after each injection, the rats were tested for locomotor activity in photocell arenas for 20 min or 2 h. In two experiments, following this subchronic treatment, all rats received a challenge injection of apomorphine (1.0 mg/kg, SC), or cocaine (10 mg/kg, IP) on day 11, and were tested for locomotor activity. In a third experiment, dopamine synthesis in striatal and mesolimbic (nucleus accumbens-olfactory turbercle) tissue was assessed following acute or chronic 7-OH-DPAT treatments by measuring the accumulation of dihydroxyphenylalanine (DOPA) after treatment with a DOPA decarboxylase inhibitor. Major findings were as follows: a) acute 7-OH-DPAT treatment produced a dose-dependent decrease in locomotor activity; b) when tested for 2 h, the 1.0 mg/kg dose of 7-OH-DPAT produced a progressively greater increase in activity across the 10 test days (i.e., behavioral sensitization); c) subchronic treatment with 7-OH-DPAT did not result in cross-sensitization to either apomorphine or cocaine; d) acute treatment with the 1.0 mg/kg dose of 7-OH-DPAT significantly decreased dopamine synthesis in both striatal and mesolimbic regions; and e) chronic 7-OH-DPAT treatments did not affect basal dopamine synthesis in either brain region. Although the behavioral effects of 7-OH-DPAT were similar to the reported effects of the D2/D3 dopamine agonist quinpirole, the effects of repeated 7-OH-DPAT treatments differed from those of quinpirole in terms of cross-sensitization and basal dopamine synthesis. These results suggest that locomotor inhibition produced by low doses of 7-OH-DPAT is not related to dopamine autoreceptor stimulation, and the development of behavioral sensitization to high doses of 7-OH-DPAT is not due to the development of dopamine autoreceptor subsensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.