Abstract

AbstractThe LEAP (Liquefaction Experiment and Analysis Project) is a continuing international collaboration to create a reliable databank of high-quality experimental results for the validation of numerical tools. This paper investigates the response of a floating rigid sheet-pile quay wall under conditions of seismically induced liquefaction, embedded in dense sand and supporting a saturated liquefiable soil deposit. The experimental challenges related to repeatability in physical modeling in such a soil-structure-interaction regime are also discussed. To this end, three experiments performed at Rensselaer Polytechnic Institute (RPI) as part of the experimental campaign for the LEAP-2020 are discussed herein. Models RPI_REP-2020 and RPI10-2020 investigate the repeatability potential in centrifuge modeling in the presence of soil-structure-interaction. Model RPI_P-2020 is the pilot test of the LEAP-2020 experimental campaign at RPI and investigates the effect of the wall’s initial orientation on the system’s dynamic response and soil liquefaction, as a possible “defect” in the model construction procedure. The three models were built in a consistent way, employed comparable instrumentation layout while simulating the same prototype and comparable soil conditions. The three models were subjected to the same acceleration target input motion, which was repeated across all three models with high consistency.KeywordsCentrifuge modelingLiquefactionSheet-pile wall

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.