Abstract

Purpose18F-fluoride PET/CT exhibits high sensitivity to delineate and measure the extent of bone metastatic disease in patients with prostate cancer. 18F-fluoride PET/CT could potentially replace traditional bone scintigraphy in clinical routine and trials. However, more studies are needed to assess repeatability and biological uptake variation. The aim of this study was to perform test-retest analysis of quantitative PET-derived parameters and blood/serum bone turnover markers at the same time point.Ten patients with prostate cancer and verified bone metastases were prospectively included. All underwent two serial 18F-fluoride PET/CT at 1 h post-injection. Up to five dominant index lesions and whole-body 18F-fluoride skeletal tumour burden were recorded per patient. Lesion-based PET parameters were SUVmax, SUVmean and functional tumour volume applying a VOI with 50% threshold (FTV50%). The total skeletal tumour burden, total lesion 18F-fluoride (TLF), was calculated using a threshold of SUV of ≥15. Blood/serum biochemical bone turnover markers obtained at the time of each PET were PSA, ALP, S-osteocalcin, S-beta-CTx, 1CTP and BAP.ResultsA total of 47 index lesions and a range of 2–122 bone metastases per patient were evaluated. Median time between 18F-fluoride PET/CT was 7 days (range 6–8 days). Repeatability coefficients were for SUVmax 26%, SUVmean 24%, FTV50% for index lesions 23% and total skeletal tumour burden (TLF) 35%. Biochemical bone marker repeatability coefficients were for PSA 19%, ALP 23%, S-osteocalcin 18%, S-beta-CTx 22%, 1CTP 18% and BAP 23%.ConclusionsQuantitative 18F-fluoride uptake and simultaneous biochemical bone markers measurements are reproducible for prostate cancer metastases and show similar magnitude in test-retest variation.

Highlights

  • The clinical gold standard for detecting and defining disease extent of skeletal metastasis has been conventional 99mTc-methylene diphosphonate planar bone scintigraphy (BS) or SPECT with or without computed tomography (CT)

  • Repeatability coefficients were for SUVmax 26%, SUVmean 24%, FTV50% for index lesions 23% and total skeletal tumour burden (TLF) 35%

  • Biochemical bone marker repeatability coefficients were for PSA 19%, alkaline phosphatase (ALP) 23%, S-osteocalcin 18%, S-beta-CTx 22%, 1CTP 18% and BAP 23%

Read more

Summary

Introduction

The clinical gold standard for detecting and defining disease extent of skeletal metastasis has been conventional 99mTc-methylene diphosphonate planar bone scintigraphy (BS) or SPECT with or without computed tomography (CT). One advantage of PET over conventional BS is that 18F-fluoride SUV correlates well with kinetic parameters of bone formation [5]. This allows whole-body PET to be used for quantitative studies, which might be useful for defining prediction and determination of therapy response and prognosis using imaging at early time points. Baseline and follow-up imaging in clinical studies quantifying lesional uptake such as SUVmax, SUVmean and functional tumour volume (FTV); total skeletal tumour burden; total lesion 18F-fluoride uptake (TLF) and biochemical bone turn over markers might correlate with outcome. 18F-fluoride can be a potential biomarker for monitoring treatment response and outcome

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.