Abstract

PurposeThe intravoxel incoherent motion (IVIM) model for DWI might provide useful biomarkers for disease management in head and neck cancer. This study compared the repeatability of three IVIM fitting methods to the conventional nonlinear least‐squares regression: Bayesian probability estimation, a recently introduced neural network approach, IVIM‐NET, and a version of the neural network modified to increase consistency, IVIM‐NETmod.MethodsTen healthy volunteers underwent two imaging sessions of the neck, two weeks apart, with two DWI acquisitions per session. Model parameters (ADC, diffusion coefficient Dt, perfusion fraction fp, and pseudo‐diffusion coefficient Dp) from each fit method were determined in the tonsils and in the pterygoid muscles. Within‐subject coefficients of variation (wCV) were calculated to assess repeatability. Training of the neural network was repeated 100 times with random initialization to investigate consistency, quantified by the coefficient of variance.ResultsThe Bayesian and neural network approaches outperformed nonlinear regression in terms of wCV. Intersession wCV of Dt in the tonsils was 23.4% for nonlinear regression, 9.7% for Bayesian estimation, 9.4% for IVIM‐NET, and 11.2% for IVIM‐NETmod. However, results from repeated training of the neural network on the same data set showed differences in parameter estimates: The coefficient of variances over the 100 repetitions for IVIM‐NET were 15% for both Dt and fp, and 94% for Dp; for IVIM‐NETmod, these values improved to 5%, 9%, and 62%, respectively.ConclusionRepeatabilities from the Bayesian and neural network approaches are superior to that of nonlinear regression for estimating IVIM parameters in the head and neck.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.